Fiche 7 : Racine carrée d'un nombre positif

Définition =

a étant un nombre positif.

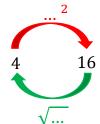
On appelle racine carrée de et on note $\sqrt{\dots}$ le nombre positif dont le carré est égale à

$$\sqrt{\dots} \ge 0$$

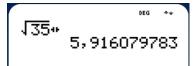
On a donc
$$\sqrt{\dots} \ge 0$$
 et $(\sqrt{\dots})^2 = \dots$

Exemples:

 $4\sqrt{16}$ est le nombre positif dont le carré est $16:\left(\sqrt{16}\right)^2=16$ Or, $4^2 = 16$, donc $\sqrt{16} = 4$.



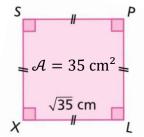
 $4\sqrt{35}$ est le nombre positif dont le carré est $35:(\sqrt{35})^2=35$



 $\sqrt{35}$ n'est pas un nombre décimal!

On peut garder la notation $\sqrt{35}$ comme valeur exacte ou en donner une valeur approchée grâce à la calculatrice :

$$\sqrt{35} \approx 5.9.$$



En 1525, l'allemand Christoff Rudolff utilise pour la première fois le symbole $\sqrt{\text{(lire } < \text{radical } >)}$.

En 1637, le français René Descartes ajoute la barre en haut : $\sqrt{ }$ Le nombre sous le radical est le radicante.

Un carré parfait est le carré d'un nombre entier.

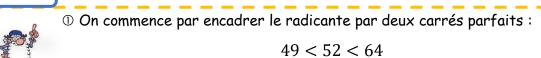
La racine carrée d'un carré parfait est donc un nombre entier.

A connaître par : la liste des carrés parfaits de 0 à 144 et leur racine carrée.

La connaissance des carrés parfaits est très utile pour calculer ou encadrer rapidement des racines carrées.

Méthode

Encadrer $\sqrt{52}$ par deux nombres entiers consécutifs.



② On obtient l'encadrement avec les racines carrées des deux carrés parfaits :

$$\sqrt{} < \sqrt{52} < \sqrt{}$$

donc
$$\dots \dots \dots < \sqrt{52} < \dots \dots \dots$$