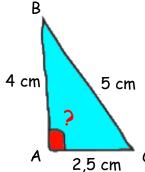
I - Prouver qu'un triangle n'est pas rectangle

Propriété: La contraposée du théorème de Pythagore

côtés, alors ce triangle est rectangle.

Exercice résolu

Enoncé : ABC est un triangle tel que $AB=4~{\rm cm}$; $AC=2,5~{\rm cm}$ et $BC=5~{\rm cm}$. Démontrer que ABC n'est pas un triangle rectangle.



Une figure à main levée aide à visualiser le problème.

Si ce triangle est rectangle, [BC] est son hypoténuse car c'est le côté le plus long.

Rédaction

Dans le triangle ABC, [BC] est le côté le plus long.

Grégory Micol

On calcule séparément :

D'une part,
$$BC^2 = \dots \dots^2 = \dots \dots$$

D'autre part,
$$AB^2 + AC^2 = \dots \dots^2 + \dots \dots^2 = \dots \dots + \dots \dots = \dots$$

On constate que : BC^2 $AB^2 + AC^2$.

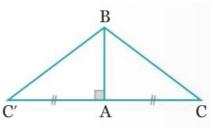
Si le triangle ABC était rectangle, d'après le théorème de Pythagore, on aurait : $BC^2 = AB^2 + AC^2$

D'après la du théorème de Pythagore, le triangle ABC n'est pas rectangle.

II - Prouver qu'un triangle est rectangle

DÉMONSTRATION

On considère le triangle ABC tel que $BC^2 = AB^2 + AC^2$. On veut démontrer que le triangle ABC est rectangle. Pour cela, on commence par tracer un point C' tel que ABC' est un triangle rectangle en A et qui vérifie AC = AC'.



 $ext{0}$ En appliquant le théorème de Pythagore dans le triangle ABC', montre que BC=BC'.

Le triangle ABC^\prime est rectangle en A , donc d'après le théorème de Pythagore , on a :

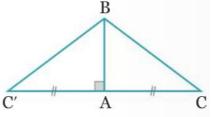
... = +

Or, $AC' = \dots \dots$ donc, $BC'^2 = AB^2 + \dots \dots = \dots \dots$ On a ainsi : $BC'^2 = \dots \dots \dots$

Puisque BC et BC' sont deux nombres, alors $BC = \dots \dots$

② Démontrer que $(AB)\perp (\mathcal{CC}')$. Que dire alors de l'angle $\widehat{\mathit{BAC}}$?

Or, si un point est des extrémités d'un segment, alors il appartient à la de ce segment.



Donc, B appartient à la de [CC'].

Par conséquent, la droite (AB) est la de $[\mathcal{CC}']$.

Or, la d'un segment est un axe de de ce segment.

Donc, C' est le de C par rapport à $(\dots \dots)$.

Je sais que : $\widehat{BAC'} = \dots \dots$

Or, la symétrie axiale conserve les mesures des

On a alors: $\widehat{BAC} = \dots = \dots = \dots$

Puisque $\widehat{BAC} = \dots \dots$, le triangle ABC est en en

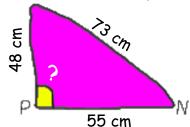
Propriété (démontrée) : La réciproque du théorème de Pythagore —

ce plus grand côté comme

Exemple:

Enoncé: MNP est un triangle tel que $MN=73~{\rm cm}$; $NP=55~{\rm cm}$ et $PM=48~{\rm cm}$.

Démontrer que MNP est un triangle rectangle.



Une figure à main levée aide à visualiser le problème.

Si ce triangle est rectangle, [MN] est son hypoténuse car c'est le côté le plus long.

Grégory Micol

Rédaction

Dans le triangle MNP, [MN] est le côté le plus long.

On calcule séparément :

D'une part, $MN^2 = \dots \dots^2 = \dots$

D'autre part, $PM^2 + PN^2 = \dots + 2 + \dots + 2 = \dots + \dots + \dots = \dots$

On constate que : MN^2 $PM^2 + PN^2$

D'après la du théorème de Pythagore, le triangle MNP est rectangle en P.

Bilan méthode

Critères de réussite pour vérifier si un triangle est rectangle ou non

② Je repère le côté le plus long et j'écris « Dans le triangle, [........] est le côté le plus long. »

- 3 Je calcule séparément :
 - o le carré de la plus grande longueur
 - o la somme des carrés des longueurs des deux autres côtés
- ④ J'écris « Je constate que : » et compare les deux résultats obtenus.
- ⑤ Je conclus « D'après la réciproque du théorème de Pythagore, le triangle ... est rectangle en ... » en cas d'égalité ou « D'après la contraposée du théorème de Pythagore, le triangle ... I n'est pas rectangle. » dans le cas contraire.