Propriétés,

Dans un agrandissement ou une réduction de rapport k:

- > l'aire d'une surface est multipliée par;

DÉMONSTRATION

Soient L, ℓ et \hbar les dimensions du pavé droit vert. On réalise un agrandissement ou une réduction de ce solide de rapport k (k > 0).

Le pavé droit obtenu a pour dimensions L', ℓ' et \hbar' .

On a:
$$L' = \dots \dots L$$

$$\ell' = \dots \ell$$

$$h' = \dots \dots h$$
.

 ${\mathcal A}$ est l'aire de la face du pavé droit vert de dimensions L et ℓ :

$$\mathcal{A} = \; \dots \dots \dots \dots$$

 \mathcal{A}' est l'aire de la face de dimensions L' et ℓ' :

$$\mathcal{A}' = \dots \dots \dots$$

On en déduit que : $\mathcal{A}' = \dots \dots \times \dots = \dots \times \dots \times \dots = \dots \times \dots = \dots \times \dots = \dots \times \dots$

 ${\mathcal V}$ est le volume du pavé droit vert :

$$\mathcal{V} = \dots \times \dots \times \dots$$

 \mathcal{V}' est le volume du pavé droit obtenu : $\mathcal{V}' = \dots \times \dots \times \dots \times \dots$

On en déduit que :
$$\mathcal{V}' = \dots \dots \times \dots \times \dots \times \dots \times \dots \dots \times \dots \dots \dots$$

$$\mathcal{V}' = \underline{\qquad \qquad \times \ \ldots \ \times \ \ldots \ } \times \underline{\qquad \qquad \times \ \ldots \ \times \ \ldots \ } = \ \ldots \ \times \ldots \ \ldots$$

Exemples:

① Un rectangle KLMN a une aire de $20 cm^2$.

Quelle est l'aire du rectangle K'L'M'N' obtenu après un agrandissement de rapport 5?

$$\mathcal{A}_{K'L'M'N'} = \dots \times \mathcal{A}_{KLMN} = \dots \times 20 \ cm^2 = \dots \dots \ cm^2$$

L'aire du rectangle K'L'M'N' est de cm^2 .

② Une pyramide a un volume \mathcal{V} de $150~cm^3$.

Quel sera son volume \mathcal{V}' après une réduction de rapport 0,6 ?

Le volume de la pyramide réduite est de cm^3 .