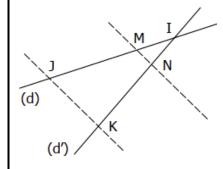


Les droites en pointillés sont toujours parallèles. Toutes les longueurs sont en centimètres. Dans chaque situation, complète les pointillés afin de calculer la longueur cherchée. Si besoin, arrondis au dixième.

Situation 1:

EI = 2.4; EF = 6; EI = 3Calculer EG.

sont tels que :


- les droites (.....) et (.....) sont sécantes en;
- les droites (.....) et (.....) sont parallèles.

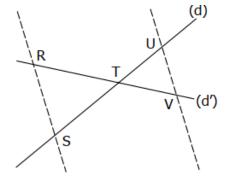
Donc, d'après le théorème de Thalès, on a :

Donc
$$EG = \dots \dots$$

Situation 2:

IM = 6.5; II = 15.6; IK = 8.4Calculer MN.

Les triangles et Les triangles et sont tels que:


- les droites (.....) et (.....) sont sécantes en;
- les droites (.....) et (.....) sont parallèles.

Donc, d'après le théorème de Thalès, on a :

Donc
$$MN = \dots \dots$$

Situation 3:

UV = 7.6; TR = 10.5; RS = 9.8Calculer TV.

Les triangles et sont tels que:

- les droites (.....) et (.....) sont sécantes en;
- les droites (.....) et (.....) sont parallèles.

Donc, d'après le théorème de Thalès, on a :

D'où
$$TV = \frac{\dots \times \dots \times \dots}{}$$

Donc
$$TV \approx \dots \dots$$